© 2007 International Union of Crystallography All rights reserved Received 21 March 2007

Accepted 4 April 2007

catena-Poly[[[µ-5,5'-di-2-pyridyl-1,1'-(pphenylenedimethylene)bis(1*H*-tetrazole)]-[chloridocopper(II)]-di-µ-chlorido-[chloridocopper(II)]] acetonitrile solvate]

In the title coordination polymer, $\{[Cu_2Cl_4(C_{20}H_{16}N_{10})] \cdot CH_3CN\}_n$, the Cu^{II} atom is five-coordinated by two N atoms from the *L* ligand (where *L* is bis $\{[2-pyridyl(1H-tetrazol-5-yl)]-1-ylmethyl\}$ benzene) and three chloride ions to form a square-pyramidal geometry. The *L* ligands bridge adjacent Cu^{II} dinuclear units, forming a one-dimensional chain.

Comment

In recent years, tetrazoles have found a wide range of applications in the area of coordination chemistry, because they can act as mono- or bidentate ligands and exhibit a strong networking ability (Wu *et al.*, 2005; Zhang *et al.*, 2006). The study of complexes containing substituted tetrazole derivatives is of interest to establish the ways in which tetrazoles bind to metal centers (Lin *et al.*, 2005). We report here the crystal structure of a copper complex, (I).

Part of the polymeric structure of (I), with the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level [symmetry code: (A) -x + 1, -y + 2, -z + 1]. H atoms have been omitted.

doi:10.1107/S1600536807016704

Acta Crystallographica Section E

Structure Reports

Online

ISSN 1600-5368

Xian-He Bu

Correspondence e-mail: tlhu@nankai.edu.cn

Lei Li, Tong-Liang Hu* and

Key indicators

Single-crystal X-ray study T = 294 K Mean σ (C–C) = 0.004 Å R factor = 0.034 wR factor = 0.081 Data-to-parameter ratio = 13.7

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

Figure 2

One-dimensional chain stucture of (I), viewed along the a axis. H atoms have been omitted.

Cu^{II} center is five-coordinated (Table 1) by two N atoms from the L ligand (where L is $bis{[2-pyridyl(1H-tetrazol-5-yl)]-1-}$ ylmethyl}benzene) and three chloride ions (Table 1) to form a square-pyramidal geometry. In fact, the chloride ions have two different coordination modes; while one chloride ion is coordinated directly to one Cu^{II} center, the remaining ones bridge the two Cu^{II} centers, separated by a relatively short distance of 3.412 (2) Å. The Cu^{II} centers are interconnected by L ligands and chloride ions to form a one-dimensional chain.

Experimental

A mixture of acetonitrile and chloroform (1:1, 10 ml) was carefully layered over a chloroform solution (3 ml) of L (0.05 mmol). A solution of CuCl₂ (0.1 mmol) in acetonitrile (3 ml) was then layered on top. Green block crystals, suitable for X-ray analysis, were collected after several weeks (yield 30%).

Crystal data

 $[Cu_2Cl_4(C_{20}H_{16}N_{10})] \cdot C_2H_3N$ V = 1490.6 (5) Å³ M = 373.72Z = 4Monoclinic, $P2_1/n$ Mo $K\alpha$ radiation $a = 7.7541 (16) \text{\AA}$ $\mu = 1.82 \text{ mm}^-$ T = 294 (2) K b = 17.086 (3) Å c = 11.383 (2) Å $\beta = 98.72(3)^{\circ}$

Data collection

Rigaku R-AXIS RAPID-S diffractometer Absorption correction: multi-scan (SADABS; Sheldrick, 1996) $T_{\min} = 0.698, T_{\max} = 0.744$

 $0.20 \times 0.18 \times 0.16 \; \mathrm{mm}$

8990 measured reflections 2625 independent reflections 2196 reflections with $I > 2\sigma(I)$ $R_{\rm int} = 0.039$

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.034$ 191 parameters $wR(F^2) = 0.081$ H-atom parameters constrained S = 1.06 $\Delta \rho_{\rm max} = 0.36 \ {\rm e} \ {\rm \AA}^ \Delta \rho_{\rm min} = -0.25 \text{ e } \text{\AA}^{-3}$ 2625 reflections

Table 1 Selected geometric parameters (Å, °).

Cu1-N1	1.995 (2)	Cu1-Cl2	2.2576 (9)
Cu1-N5	2.090 (2)	Cu1-Cl2 ⁱ	2.6955 (10)
Cu1-Cl1	2.2385 (10)		
N1-Cu1-N5	78.40 (9)	N1-Cu1-Cl2 ⁱ	89.48 (7)
N1-Cu1-Cl1	92.94 (7)	N5-Cu1-Cl2 ⁱ	91.56 (6)
N5-Cu1-Cl1	159.97 (7)	Cl1-Cu1-Cl2 ⁱ	106.53 (4)
N1-Cu1-Cl2	171.46 (7)	Cl2-Cu1-Cl2 ⁱ	93.40 (3)
N5-Cu1-Cl2	93.48 (7)	Cu1-Cl2-Cu1 ⁱ	86.60 (3)
Cl1-Cu1-Cl2	93.94 (3)		

Symmetry code: (i) -x + 1, -y + 2, -z + 1.

H atoms were positioned geometrically with C-H = 0.93, 0.97 and 0.96 Å, for aromatic, methylene and methyl H atoms, respectively, and constrained to ride on their parent atoms, with $U_{iso}(H) =$ $xU_{eq}(C)$, where x = 1.5 for methyl H and x = 1.2 for all other H atoms.

Data collection: CrystalClear (Rigaku/MSC, 2005); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Bruker, 1998); software used to prepare material for publication: SHELXTL.

The authors thank Nankai University for supporting this work.

References

Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.

Bruker (1998). SHELXTL. Bruker AXS Inc., Madison, Wisconsin, USA.

Lin, P., Clegg, W., Harrington, R. W. & Henderson, R. A. (2005). Dalton Trans. pp. 2388-2394.

Rigaku/MSC (2005). CrystalClear. Rigaku/MSC, The Woodlands, Texas, USA.

Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.

Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.

Wu, T., Yi, B. H. & Li, D. (2005). Inorg. Chem. 44, 4130-4132.

Zhang, X. M., Zhao, Y. F., Wu, H. S., Batten, S. R. & Ng, S. W. (2006). Dalton Trans. pp. 3170-3178.